Limba engleza

Nr.1

Select the correct equation for computing the period of vibration:

1.
$$T = 2 \cdot \sqrt{\delta \cdot G}$$

2. $T = 2 \cdot \sqrt{k \cdot G}$
3. $T = 0.2 \cdot \sqrt{k \cdot G}$
3. $T = 0.2 \cdot \sqrt{k \cdot G}$

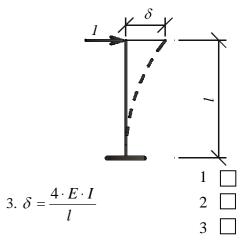
Nr. 2

Select the correct equation for computing the circular frequency of vibration:

1.
$$\omega = \frac{2 \cdot \pi}{f}$$
 2. $\omega = \sqrt{\frac{g}{\delta \cdot G}}$ 3. $\omega = \sqrt{k \cdot m}$ 2
3. $\omega = \sqrt{k \cdot m}$ 3
3. $\omega = \sqrt{k \cdot m}$ 3
3. $\omega = \sqrt{k \cdot m}$ 3. $\omega = \sqrt{k$

Nr. 3

The flexibility (δ) of the system shown by the next figure:

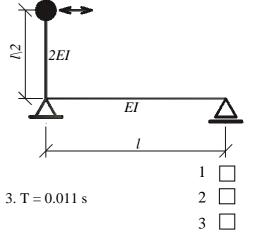


1.
$$\delta = \frac{l^3}{3 \cdot E \cdot I}$$
 2. $\delta = \frac{3 \cdot E \cdot I}{l^2}$

The period of vibration (T) for the system shown by the next figure is:

2. T = 0.194 s

l = 3 m G = 20 KN $EI = 6 \cdot 10^9 daN cm^2$

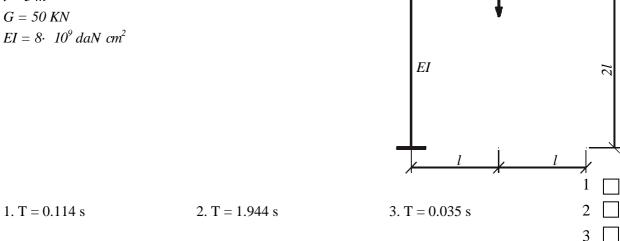


т

1. T = 3.244 s

The period of vibration (T) for the system shown by the next figure is:

l = 3 m



т

2EI

2EI

Nr. 6

Which of the next versions represents the system of equation for determining the modes of vibrations for the *n DOF* system in undamped free vibrations using stiffness matrix method?

1.
$$([k]_{L} - \omega_{r}^{2} \cdot [m]) \cdot \{U_{ir}\} = \{0\}$$

2. $([k]_{L} - \theta^{2} \cdot [m]) \cdot \{U_{ir}\} = \{0\}$
3. $([\Delta]_{L} - \omega_{r}^{2} \cdot [m]) \cdot \{U_{0i}\} = \{0\}$
3. $([\Delta]_{L} - \omega_{r}^{2} \cdot [m]) \cdot \{U_{0i}\} = \{0\}$

Nr. 7

Which of the next versions represents the system of equation for determining the modes of vibrations for the *n DOF* system in undamped free vibrations using flexibility matrix method?

1. $(\omega_r \cdot [\Delta]_L \cdot [m] - [1]) \cdot \{U_{ir}\} = \{0\}$	1
2. $(\omega_r^2 \cdot [\Delta]_L \cdot [m] - [1]) \cdot \{U_{ir}\} = \{0\}$	2
3. $([\Delta]_{L} \cdot [\mathbf{m}] - \omega_{r}^{2} \cdot [1]) \cdot \{\mathbf{U}_{ir}\} = \{0\}$	3

Nr. 8

Which of the next versions represents the system of equation for determining the maximum and minimum conventional forces using the stiffness matrix method?

$$1. ([k]_{L} - \theta^{2} \cdot [m]) \cdot \{U_{0i}\} + \{D_{0i}\} = \{0\}$$

$$2. ([k]_{L} - \theta^{2} \cdot [m]) \cdot \{U_{0i}\} = \{F_{0i}\}$$

$$3. ([k]_{L} - \omega^{2} \cdot [m]) \cdot \{U_{0i}\} = \{F_{0i}\}$$

$$3. [[k]_{L} - \omega^{2} \cdot [m]) \cdot \{U_{0i}\} = \{F_{0i}\}$$

Which of the next versions represents the system of equation for determining the maximum and minimum conventional forces using the flexibility matrix method:

- 1. $(\theta^2 \cdot [\Delta]_L \cdot [m] [1]) \cdot \{U_{0i}\} + \{D_{0i}\} = \{0\}$ 2. $(\theta^2 \cdot [\Delta]_L \cdot [m] - [1]) \cdot \{U_{0i}\} = \{F_{0i}\}$ 3. \Box
- 3. $\left(\theta^2 \cdot \left[\Delta\right]_L \cdot \left[m\right] \left[1\right]\right) \cdot \left\{U_{ir}\right\} = \left\{D_{0i}\right\}$

Nr. 10

Which of the next orthogonality equations is correct:

1.
$$\sum_{i=1}^{n} m_{i} \cdot U_{ir} \cdot U_{is} = 0, r \neq s$$
 2. $\sum_{r=1}^{n} m_{i} \cdot U_{ir} \cdot U_{is} = 0, r \neq s$ 3. $\sum_{i=1}^{n} m_{r} \cdot U_{ir} \cdot U_{is} = 0, r \neq s$ 2 2 3

Nr. 11

Conforming P100 – 92, for a S DOF system, the seismic force is defined by:

1.
$$S = \alpha \cdot k_s \cdot \beta \cdot \psi \cdot G$$

2. $S_r = \alpha \cdot k_s \cdot \beta_r \cdot \psi \cdot G_r$
3. $S_i = \alpha_i \cdot k_s \cdot \beta_i \cdot \psi \cdot G_i$
3. \Box

Nr. 12

Conforming P100 – 92, for a n DOF system, the seismic force computed through the direct method is defined by:

$$1 \quad \square$$

$$1.S_{ir} = \alpha \cdot k_s \cdot \beta_r \cdot \psi \cdot \varepsilon_r \cdot G_i \quad 2. \quad S_{ir} = \alpha \cdot k_s \cdot \beta_r \cdot \psi \cdot \eta_{ir} \cdot G_i \quad 3. \quad S_{ir} = \alpha \cdot k_s \cdot \beta_r \cdot \psi_i \cdot \eta_{ir} \cdot G_i \quad 2 \quad \square$$

$$3 \quad \square$$

Nr. 13

Conforming P100 – 92, for a n DOF system, the seismic force computed through the indirect method is defined by:

1

1 🗆

1.
$$\mathbf{S}_{r} = \alpha \cdot \mathbf{k}_{s} \cdot \beta_{r} \cdot \psi \cdot \varepsilon_{r} \cdot \mathbf{G}$$
 2. $\mathbf{S}_{r} = \alpha \cdot \mathbf{k}_{s} \cdot \beta_{r} \cdot \psi \cdot \eta_{r} \cdot \mathbf{G}_{r}$ 3. $\mathbf{S}_{r} = \alpha_{r} \cdot \mathbf{k}_{s} \cdot \beta_{r} \cdot \psi \cdot \varepsilon_{r} \cdot \mathbf{G}_{r}$ 2
3

Nr. 14

Conforming P100 – 92, the dynamic coefficient β has the next maximum and minimum values:

1.
$$\frac{\beta_{\max}}{\beta_{\min}} = 1$$

2. $\frac{\beta_{\max}}{\beta_{\min}} = 3$
 $\beta_{\min} = 0.7$
3. $\frac{\beta_{\max}}{\beta_{\min}} = 2.5$
 $\beta_{\min} = 0.7$
3. $\frac{\beta_{\max}}{\beta_{\min}} = 0.7$
3. $\frac{\beta_{\max}}{\beta_{\min}} = 0.7$

For the system shown by the next figure, the flexibility matrix is:

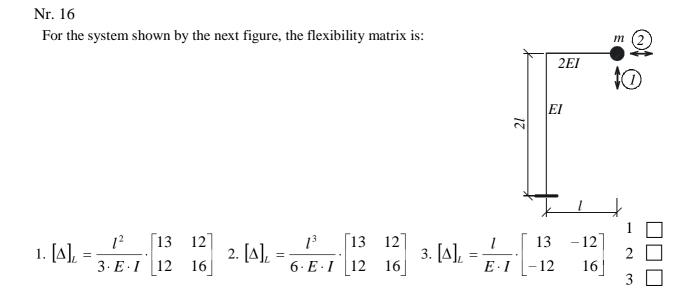
$$1. \ [\Delta]_{L} = \frac{l^{3}}{E \cdot I} \cdot \begin{bmatrix} \frac{3}{4} & \frac{11}{12} \\ \frac{11}{12} & \frac{4}{3} \end{bmatrix} \quad 2. \ [\Delta]_{L} = \frac{l^{2}}{3 \cdot E \cdot I} \cdot \begin{bmatrix} \frac{3}{4} & \frac{11}{12} \\ \frac{11}{12} & \frac{4}{3} \end{bmatrix} \quad 3. \ [\Delta]_{L} = \frac{l}{E \cdot I} \cdot \begin{bmatrix} \frac{3}{4} & -\frac{11}{12} \\ -\frac{11}{12} & \frac{4}{3} \end{bmatrix} \quad 3 \quad [\Delta]_{L} = \frac{l}{E \cdot I} \cdot \begin{bmatrix} \frac{3}{4} & -\frac{11}{12} \\ -\frac{11}{12} & \frac{4}{3} \end{bmatrix} \quad 3 \quad [\Delta]_{L} = \frac{l}{E \cdot I} \cdot \begin{bmatrix} \frac{3}{4} & -\frac{11}{12} \\ -\frac{11}{12} & \frac{4}{3} \end{bmatrix} \quad 3 \quad [\Delta]_{L} = \frac{l}{E \cdot I} \cdot \begin{bmatrix} \frac{3}{4} & -\frac{11}{12} \\ -\frac{11}{12} & \frac{4}{3} \end{bmatrix} \quad 3 \quad [\Delta]_{L} = \frac{l}{E \cdot I} \cdot \begin{bmatrix} \frac{3}{4} & -\frac{11}{12} \\ -\frac{11}{12} & \frac{4}{3} \end{bmatrix} \quad 3 \quad [\Delta]_{L} = \frac{l}{E \cdot I} \cdot \begin{bmatrix} \frac{3}{4} & -\frac{11}{12} \\ -\frac{11}{12} & \frac{4}{3} \end{bmatrix} \quad 3 \quad [\Delta]_{L} = \frac{l}{E \cdot I} \cdot \begin{bmatrix} \frac{3}{4} & -\frac{11}{12} \\ -\frac{11}{12} & \frac{4}{3} \end{bmatrix} \quad 3 \quad [\Delta]_{L} = \frac{l}{E \cdot I} \cdot \begin{bmatrix} \frac{3}{4} & -\frac{11}{12} \\ -\frac{11}{12} & \frac{4}{3} \end{bmatrix} \quad 3 \quad [\Delta]_{L} = \frac{l}{E \cdot I} \cdot \begin{bmatrix} \frac{3}{4} & -\frac{11}{12} \\ -\frac{11}{12} & \frac{4}{3} \end{bmatrix} \quad 3 \quad [\Delta]_{L} = \frac{l}{E \cdot I} \cdot \begin{bmatrix} \frac{3}{4} & -\frac{11}{12} \\ -\frac{11}{12} & \frac{4}{3} \end{bmatrix} \quad 3 \quad [\Delta]_{L} = \frac{l}{E \cdot I} \cdot \begin{bmatrix} \frac{3}{4} & -\frac{11}{12} \\ -\frac{11}{12} & \frac{4}{3} \end{bmatrix} \quad 3 \quad [\Delta]_{L} = \frac{l}{E \cdot I} \cdot \begin{bmatrix} \frac{3}{4} & -\frac{11}{12} \\ -\frac{11}{12} & \frac{4}{3} \end{bmatrix} \quad 3 \quad [\Delta]_{L} = \frac{l}{E \cdot I} \cdot \begin{bmatrix} \frac{3}{4} & -\frac{11}{12} \\ -\frac{11}{12} & \frac{4}{3} \end{bmatrix} \quad 3 \quad [\Delta]_{L} = \frac{l}{E \cdot I} \cdot \begin{bmatrix} \frac{3}{4} & -\frac{11}{12} \\ -\frac{11}{12} & \frac{1}{4} \end{bmatrix} \quad 3 \quad [\Delta]_{L} = \frac{l}{E \cdot I} \cdot \begin{bmatrix} \frac{3}{4} & -\frac{11}{12} \\ -\frac{11}{12} & \frac{1}{4} \end{bmatrix} \quad 3 \quad [\Delta]_{L} = \frac{l}{E \cdot I} \cdot \begin{bmatrix} \frac{3}{4} & -\frac{11}{12} \\ -\frac{11}{12} & \frac{1}{4} \end{bmatrix} \quad 3 \quad [\Delta]_{L} = \frac{l}{E \cdot I} \cdot \begin{bmatrix} \frac{3}{4} & -\frac{11}{12} \\ -\frac{1}{12} & -\frac{1}{12} \end{bmatrix} \quad 3 \quad [\Delta]_{L} = \frac{l}{E \cdot I} \cdot \begin{bmatrix} \frac{3}{4} & -\frac{11}{12} \\ -\frac{1}{12} & -\frac{1}{12} \end{bmatrix} \quad 3 \quad [\Delta]_{L} = \frac{l}{E \cdot I} \cdot \begin{bmatrix} \frac{1}{4} & -\frac{1}{12} \\ -\frac{1}{12} & -\frac{1}{12} \end{bmatrix} \quad 3 \quad [\Delta]_{L} = \frac{l}{E \cdot I} \cdot \begin{bmatrix} \frac{1}{4} & -\frac{1}{12} \\ -\frac{1}{12} & -\frac{1}{12} \end{bmatrix} \quad 3 \quad [\Delta]_{L} = \frac{1}{E \cdot I} \cdot \begin{bmatrix} \frac{1}{4} & -\frac{1}{12} \\ -\frac{1}{12} & -\frac{1}{12} \end{bmatrix} \quad 3 \quad [\Delta]_{L} = \frac{1}{E \cdot I} \cdot \begin{bmatrix} \frac{1}{4} & -\frac{1}{12} \\ -\frac{1}{12} & -\frac{1}{12} \end{bmatrix} \quad 3 \quad [\Delta]_{L} = \frac{1}{E \cdot I} \cdot \begin{bmatrix} \frac{1}{4} & -\frac{1}{12} \\ -\frac{1}{12} & -\frac{1}{12} \end{bmatrix} \quad 3 \quad [\Delta]_{L} = \frac{1}{E \cdot I} \cdot \begin{bmatrix} \frac{1}{4} & -\frac{1}{12} \\ -\frac{1}{12} & -\frac{1}{12} \end{bmatrix} \quad 3 \quad$$

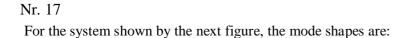
(2)

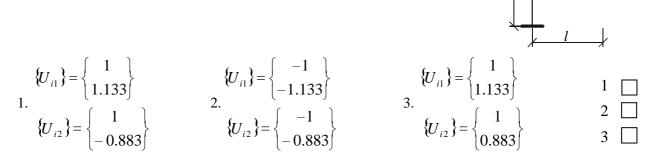
2EI

ΕI

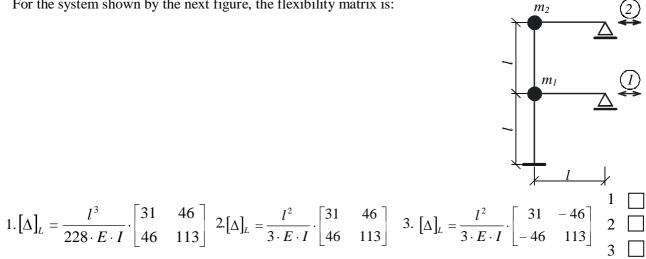
(1)

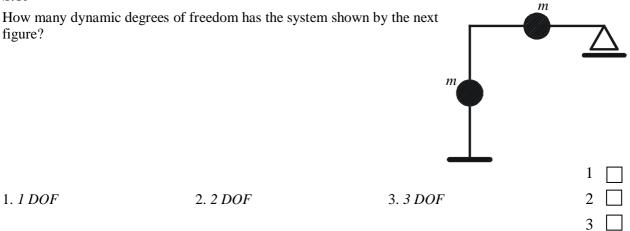




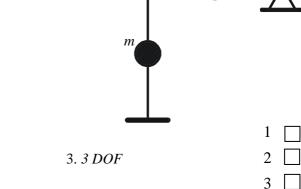


Nr.18 For the system shown by the next figure, the flexibility matrix is:



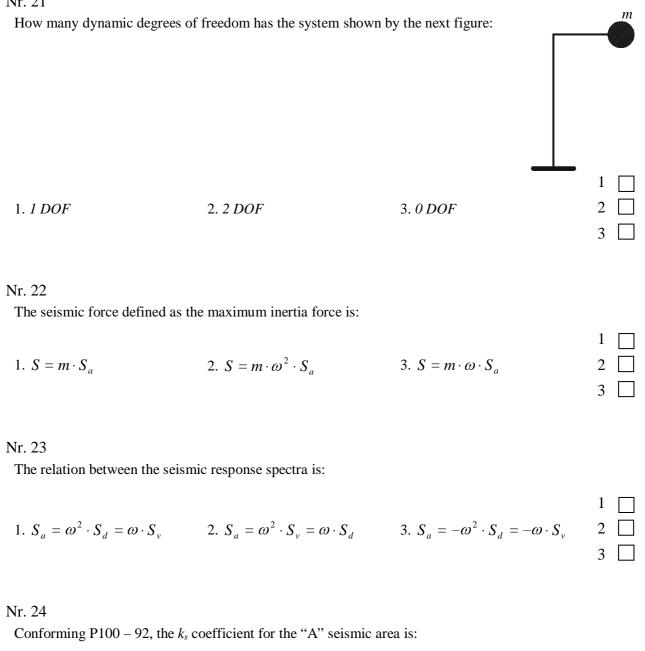


How many dynamic degrees of freedom has the system shown by the next figure?



1. 1 DOF

2. 2 DOF



1.
$$k_s = 0.32$$
 2. $k_s = 0.26$ 3. $k_s = 0.20$ 2

1

3

1

3

Nr. 25

Conforming P100 – 92, the minimum degree of seismic assurance R_{min} for the buildings belonging to the second importance class is:

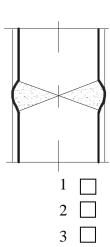
 $2 \square$ 2. $R_{min} = 0.70$ 3. $R_{min} = 0.50$ 1. $R_{min} = 0.60$

Which of the next forces or bending moments produce the damages shown by the next figure (M – is the bending moment; Q - is the shear force; N - is the axial force):

1. M

2. Q

2. Q



1 2

3

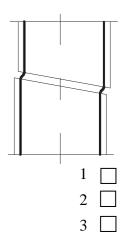
Nr. 27

Which of the next forces or bending moments produce the damages shown by the next figure (M - is the bending moment; Q - is the shear force; N - is the axial force):

Nr. 28

1. M

Which of the next forces or bending moments produce the damages shown by the next figure (M – is the bending moment; Q - is the shear force; N - is the axial force):



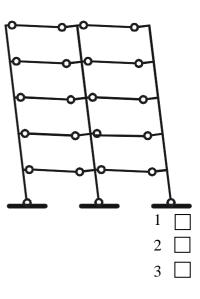
2. Q

3. N

For the system shown by the next figure the collapse mechanism is:

- 1. collapse due to columns
- 2. collapse due to girders
- 3. collapse due to columns and girders

For the system shown by the next figure the collapse mechanism is:



- 1. collapse due to columns
- 2. collapse due to girders
- 3. collapse due to columns and girders

Nr.31

The earthquakes from Vrancea area are:

- 1. shallow earthquakes
- 2. intermediate earthquakes
- 3. deep earthquakes

Nr.32

Which of the next seismic waves are the most dangerous for buildings:

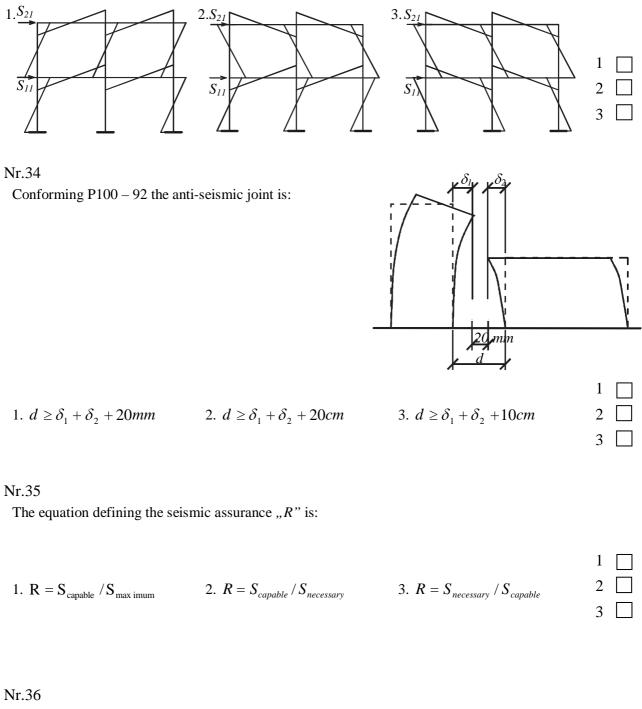
1. the primary (longitudinal) waves 2. the secondary (transversal) waves 3. the surface waves

1

2

3

Which of the next bending moment diagrams is correct:



As a part of Geology, the seismology is the science conserned with the study of:

1. Earth structure	
2. earthquakes	2
3. vibrations of civil engineering structures	3

The tectonic plates are floating on the mantle of the Earth determining:

 the continental drift the Earth internal struct the behavior if civil er 			1 2 3	
Nr.38 The process in which a t	ectonic plate is moving against	and under another plate is named:	1	
1. subduction	2. substitution	3. substructure	2 3	
Nr.39 The place where an earth of the crust is named (2) 1. (1) hypocenter; (2) ep 2. (1) epicenter; (2) hypo 3. (1) hypocenter or four	idermis ocenter or focus	1)and the correspond	ling project 1 2 3	tion
waves) are (2)1. (1) transversal (shear)2. (1) parallel (bending);			waves (or 1 2 3	S –
Nr.41 The earthquakes can be 1	registered and measured with:		1	

1. the seismograph	2. the micrometre	3. the pantograph	
--------------------	-------------------	-------------------	--

2 🗌 3 🗌

Nr.42

An seismic intensity scale, such as Mercalli Modified scale (MM), is:	
1. an objective scale, based on instrumentation measurements	1
2. a subjective scale, based on human feeling and on effects on structures and living beings	2
3. an objective scale, based on 12 degrees of structural damages	3

The Richter scale is	an (1), scale,	, also named (2)	scale:
 (1) objective; (2) (1) objective; (2) (1) subjective; (2) 	magnitude		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Nr.44 The modified Merca	ılli scale (MM) is ade	egrees scale:	
1. IX	2. XI	3. XII	$\begin{array}{c}1\\2\end{array}$

3

1

2

3

3

Nr.45

The seismic magnitude is define as:

- 1. the base 10 logarithm of the maximum amplitude, measured in micrometres $(10^{-6}m)$, of the earthquake record obtained by Wood Anderson seismograph with magnification 2800, the natural period T=0.8s, damping coefficient 0.8, and corrected to a distance of 100 km from epicenter.
- 2. the natural logarithm of the minimum amplitude, measured in nanometers (10⁻⁹m), of the earthquake result obtained by Woody Alen, seismograph with magnification 8200, the natural period T=8.0s, damping coefficient 8.0, and corrected to a distance of 90 km from epicenter.
- 3. the natural logarithm of the average amplitude, measured in centimeters (10⁻²m), of the earthquake result obtained by Wood Angel seismograph with magnification 28, the natural period T=8.08s, damping coefficient 0.8, and corrected to a distance of 10 m from epicenter.

Nr.46

It was observed that the magnitude, M, is directly linked by the seismic energy, E (in ergs) in the focus by the next equation:

1.
$$\ln E = 16.5 \cdot M^2 + 0.8 \cdot M$$
 2. $\log_{10} E = 11.8 + 1.5 \cdot M$ 3. $\log_{10} M = 11.8 \cdot E^2 + 1.5 \cdot E$ 2

Nr.47

The main earthquake from March 4th 1977, from Vrancea had the next main characteristics:

1. magintude (Richer) = 7.2 ; mensity (Mercani) = 9		
2. magnitude (Mercalli) = 6; intensity (Richter) = 6	2	
3. magnitude (Richter) = 2.7 ; intensity (Mercalli) = 8	3	

Romanian Earthquake engineering code is named:

1. P001 - 29	2. P100 - 92	3. P92 - 100	2
--------------	--------------	--------------	---

1

3

1 $2 \square$

3

3

Nr.49

Conforming to the seismic zonation of Romania, an earthquake with the intensity 9 on MSK scale is probable to occur every years in Vrancea area:

1. 3 2. 1977 3. 100

Nr.50

A system with 1 DOF, "u(t)", has the mass "m", the stiffness "k" and the damping "c". If the external, unidirectional acceleration earthquake action is $u_g(t)$, then the equation of motion for this system under the earthquake action is:

1.
$$m \cdot u(t) + c \cdot u(t) + k \cdot u(t) = -m \cdot u_g(t)$$

2. $m \cdot u_g(t) + c \cdot u_g(t) + k \cdot u_g(t) = -m \cdot u_g(t)$
3. $m \cdot u_g(t) + c \cdot u_g(t) + k \cdot u_g(t) = -m \cdot u_g(t)$

3.
$$m \cdot u_g(t) + c \cdot u(t) + k \cdot u(t) = -m \cdot u(t)$$

.

Nr.51

A particular solution of the equation of motion $u(t) + 2 \cdot \xi \cdot \omega \cdot u(t) + \omega^2 \cdot u(t) = -u_g(t)$:

1.
$$u(t) = 2 \cdot \xi \cdot \omega + \frac{1}{\omega^2} \cdot \int_0^t u_g(\tau) \cdot e^{-\xi \cdot \tau} \cdot \sin \frac{1}{\sqrt{1 - \xi^2}} \cdot d\tau$$
2.
$$u(t) = -\frac{1}{m} \cdot \int_0^t u_g(\tau) \cdot \sin \frac{\omega^2}{1 - \xi^2} \cdot d\tau$$
2.
$$u(t) = -\frac{1}{m} \cdot \int_0^t u_g(\tau) \cdot \sin \frac{\omega^2}{1 - \xi^2} \cdot d\tau$$
3.
$$u(t) = -\frac{1}{m} \cdot \int_0^t u_g(\tau) \cdot \sin \frac{\omega^2}{1 - \xi^2} \cdot d\tau$$
3.
$$u(t) = -\frac{1}{m} \cdot \int_0^t u_g(\tau) \cdot \sin \frac{\omega^2}{1 - \xi^2} \cdot d\tau$$
4.
$$u(t) = -\frac{1}{m} \cdot \int_0^t u_g(\tau) \cdot \sin \frac{\omega^2}{1 - \xi^2} \cdot d\tau$$
5.
$$u(t) = -\frac{1}{m} \cdot \int_0^t u_g(\tau) \cdot \sin \frac{\omega^2}{1 - \xi^2} \cdot d\tau$$
5.
$$u(t) = -\frac{1}{m} \cdot \int_0^t u_g(\tau) \cdot \sin \frac{\omega^2}{1 - \xi^2} \cdot d\tau$$
5.
$$u(t) = -\frac{1}{m} \cdot \int_0^t u_g(\tau) \cdot \sin \frac{\omega^2}{1 - \xi^2} \cdot d\tau$$
5.
$$u(t) = -\frac{1}{m} \cdot \int_0^t u_g(\tau) \cdot \sin \frac{\omega^2}{1 - \xi^2} \cdot d\tau$$
5.
$$u(t) = -\frac{1}{m} \cdot \int_0^t u_g(\tau) \cdot \sin \frac{\omega^2}{1 - \xi^2} \cdot d\tau$$
5.
$$u(t) = -\frac{1}{m} \cdot \int_0^t u_g(\tau) \cdot \sin \frac{\omega^2}{1 - \xi^2} \cdot d\tau$$
5.
$$u(t) = -\frac{1}{m} \cdot \int_0^t u_g(\tau) \cdot \sin \frac{\omega^2}{1 - \xi^2} \cdot d\tau$$
5.
$$u(t) = -\frac{1}{m} \cdot \int_0^t u_g(\tau) \cdot \sin \frac{\omega^2}{1 - \xi^2} \cdot d\tau$$
5.
$$u(t) = -\frac{1}{m} \cdot \int_0^t u_g(\tau) \cdot \sin \frac{\omega^2}{1 - \xi^2} \cdot d\tau$$
5.
$$u(t) = -\frac{1}{m} \cdot \int_0^t u_g(\tau) \cdot \sin \frac{\omega^2}{1 - \xi^2} \cdot d\tau$$

3.
$$u(t) = -\frac{1}{\omega \cdot \sqrt{1-\xi^2}} \cdot \int_0^t u_g(\tau) \cdot e^{-\xi \cdot \omega \cdot (t-\tau)} \cdot \sin\left[\omega \cdot \sqrt{1-\xi^2} \cdot (t-\tau)\right] \cdot d\tau$$

For an *1 DOF* system described by the equation $u(t) + 2 \cdot \xi \cdot \omega \cdot u(t) + \omega^2 \cdot u(t) = -u_g(t)$, the spectral value of the displacement is defined by:

$$1 S_{d}(\xi, \omega) = |u(t)|_{\max} \qquad 2. S_{\omega}(\xi, \omega) = \begin{vmatrix} \mathbf{u}(t) \\ u(t) \end{vmatrix}_{\min} \qquad 3. S_{a}(\xi, \omega) = \left| u(t) \right|^{2} \qquad 2 \square$$

1

2

3

Nr.53

A design spectra refers to the maximum probabilistic response of 1 DOF system loaded by:

- 1. the Vrancea earthquake, March 4th, 1977
- 2. many earthquake records
- 3. one specific earthquake, chosen by designer

Nr.54

A multi degree of freedom system loaded by an earthquake $u_s(t)$ is given by next equations where [M]- mass matrix, [K]- stiffness matrix, [C]- damping matrix, $\{u\}$ displacement vector:

$$1 \quad [M] \cdot \left\{ \overset{\bullet}{u}(t) \right\} + [C] \cdot \left\{ \overset{\bullet}{u}(t) \right\} + [K] \cdot \left\{ u(t) \right\} = -[M] \cdot \left\{ \overset{\bullet}{u}_{g}(t) \right\}$$

$$2. \quad [M] \cdot \left\{ \overset{\bullet}{u}_{g}(t) \right\} + [C] \cdot \left\{ \overset{\bullet}{u}_{g}(t) \right\} + [K] \cdot \left\{ u_{g}(t) \right\} = -[M] \cdot u(t)$$

$$3. \quad [M] \cdot \left\{ u(t) \right\} + [C] \cdot \left\{ \overset{\bullet}{u}(t) \right\} + [K] \cdot \left\{ \overset{\bullet}{u}(t) \right\} = -[M] \cdot \overset{\bullet}{u}_{g}(t)$$

$$3. \quad [M] \cdot \left\{ u(t) \right\} + [C] \cdot \left\{ \overset{\bullet}{u}(t) \right\} + [K] \cdot \left\{ \overset{\bullet}{u}(t) \right\} = -[M] \cdot \overset{\bullet}{u}_{g}(t)$$

Nr.55

For a "n" DOF system with the stiffness [K] and the mass matrix [M], the unknown eigenvalue " ω ", can be determined from the next characteristic equations::

$$1 \det([K] - \omega^2 \cdot [M]) = 0$$

2.
$$[K] \cdot \omega^2 + [M] \cdot \omega + [1] = \{0\}$$
 2

3.
$$\sqrt{[K]^2 + \omega \cdot [M] \cdot \omega + [1]} = \{0\}$$
 3

Nr.56

The maximum response of a structure to seismic load, obtained by modal superposition is given by (note that R_r , is the response for the r, index of vibration):

1.
$$R_{\max} = \frac{\sum_{r=1}^{m} R_r}{\sqrt{\sum_{r=1}^{m} R_r^2}}$$
 2. $R_{\max} = \sqrt{\sum_{r=1}^{m} R_r^2}$ 3. $R_{\max} = \frac{1}{\sqrt{\sum_{r=1}^{m} R_r^2}}$ 3. \square