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1. The system of equations 

0Y
yx

0X
yx

yxy

yxx

=+
∂

σ∂
+

∂

τ∂

=+
∂

τ∂
+

∂

σ∂

 represents: 

a) 

 

b) 

 

c) 

d) 

the static equilibrium equations for an infinitesimal element detached from a body subjected to a plane 

stress state;           

the dynamic equilibrium equations for an infinitesimal element detached from a body subjected to a plane 

stress state;           

the boundary conditions in plane elasticity;           

the continuity condition in plane elasticity.   

 

2. 

The stress tensor at a point of a deformable loaded is: 
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What is the tensor element that represents a principal stress? 

a. 4 N/mm
2
 b. 10 N/ mm

2
 c. -12 N/ mm

2
 d. 20N/ mm
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3. The system of equations 
mlp

mlp

yxyy

yxxx

σ+τ=

τ+σ=
 represents: 

a) 

 

b) 

 

c) 

d) 

the static equilibrium equations for an infinitesimal element detached from a body subjected to a plane 

stress state;           

the dynamic equilibrium equations for an infinitesimal element detached from a body subjected to a plane 

stress state;           

the boundary conditions in plane elasticity;           

the continuity condition in plane elasticity the continuity.  

 

4. The system of equations 
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=ε ,  represents: 

a) 

b) 

c) 

d) 

the constitutive law of the material in plane elasticity;      

the geometric equations in plane elasticity;          

the constitutive law of the material in three-dimensional elasticity;         

the boundary conditions in plane elasticity.  

 



 

5. 

The strain tensor at a point of a homogeneous and isotropic body is: 
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A principal direction of deformation at this point coincides to: 

a. 
direction of axis 

Ox 
b. direction of axis Oy c. 

direction of axis 

Oz 
d. 

bisector of angle 

yOx ˆ  

 

6. Condition ( ) 0=+∆ yx σσ  represents: 

a) 

b) 

c) 

d) 

a static equilibrium equation in plane elasticity;        

the continuity condition expressed in terms of stresses, in plane elasticity;   

the continuity condition expressed in terms of stresses, in three-dimensional elasticity;  

a boundary condition in plane elasticity. 

  

   

7. 
The solution of a plane elasticity problem in terms of stresses, by considering a Cartesian coordinate 

system, consists in solving the differential equation (notation ∇2∇2
 ≡ ∆∆): 
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8. The stress function F(x,y) generates the following stresses: 

a) 

b) 

c) 

d) 
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9. 

For the rectangular two-dimensional element shown in the figure, the stress function is: 
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10. The polynomial corresponding to tension along to orthogonal directions is: 
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11. The polynomial 
6

dy

2

ay
)y,x(F

32

+=  corresponds to: 

a. 
eccentric tension in 

y axis direction  
b. 

eccentric tension in x 

axis direction   
c. 

combined shear 

and bending 
d. tension along two  

directions 

 

12. The stresses generated by the polynomial 
6
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++=  have the expressions: 

a. 
σx = cy; σy = a;      

τxy = -b 
b. 

σx = bx + cy;    σy = a;      

τxy = -b 
c. 

σx = cy;      σy = 0;      

τxy = -by 
d. σx = bx + cy;     σy = a;      

τxy = 0  

 

13. 

 

 

 

 

The stress function at point  “1” of the two-

dimensional element with unit thickness, shown in 

the figure, is: 

 

a. pLF1 −=  b. 
4

pL
F

2

1 =  c. 
2

pL
F

2

1 −=  d. 
8

pL
F

2

1 =  

 

14. 

 

 

 

 

The correct values of the stresses σy and τxy at 

point “1” of the element presented in the figure 

are: 

 

a. σy = p, τxy = 0 b. σy = -p, τxy = p c. σy = -p, τxy = 0 d. σy = 0, τxy = 0 
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15. 

 

 

 

 
The stress function at point “1” of the two-dimensional 

element shown in the figure (when the origin is located at 

point O) is: 
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16. 

 
 

 

 

What are the values of the stresses σx, σy, τxy at the central point of the 
deep beam shown in the figure, when their evaluation is performed by 

using the finite differences method, with the presented grid? 

a) 

b) 

c) 

d) 
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17. 
Mention the value for the ratio L/H for which a rectangular two-dimensional element, loaded in its middle 

surface plane, is considered to be a deep beam: 
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18. 

 

For the two-dimensional triangular finite element shown in the 

figure, the displacement field can be expressed as: 

 
u(x,y) = Niui + Njuj + Nkuk, 

v(x,y) = Nivi + Njvj + Nkvk 

 

where Ni, Nj, Nk are: 

a. stress functions b. axial forces c. 
Weighting 

functions 
d. shape functions 



 
 

19. 

 

The stresses produced by the interior pressure pi in a cylinder with 

thick walls are:  
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20. 

 

 

 

 

The stresses at a point of a infinite plate with a circular hole acted 

by a constant radial pressure p are: 
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21. 

 

 

 

 

At a point of an elastic half-plane, loaded by 

a force that acts normal to the surface, as 

presented in the figure, the radial stresses are: 
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22. 

 

 

 

 

For an elastic half-plane, loaded by a force normal to the boundary, as 

shown in the figure, the circles tangent to the boundary at the origin are 

called: 

 

 

 

a. isochromatics b. isoclines c. trajectories of first kind d. isobars 
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Knowing 
r
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−=σ  for a 

half-plane acted by a force normal 

to the boundary, mention the 

values that characterize the isobars: 
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24. 
The differential equation of the deformed middle surface in Cartesian coordinates for rectangular plates, 

acted by normal forces to their middle plane, has the shape: 

a) 

b) 

c) 

d) 
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25. The internal forces that occur in rectangular plates, loaded by normal forces to their middle plane, are: 

a) 

b) 

c) 

d) 

the axial forces Nx , Ny ; the shear forces Tx , Ty ; 

the axial forces Nx , Ny ; the bending moments Mx , My ;  

the bending moments Mx , My ; the twisting moment Mxy = Myx = Mt; the shear forces Tx , Ty;  

the axial forces Nx , Ny ; the twisting moment Mxy = Myx; 

 

26. 
Some of the stresses that occur in a plate subjected to bending have maximum absolute value on the upper 

surface and the lower surface of the plate. What are these stresses? 

a. ;,, yzxzx ττσ  b. ;,, yzxzy ττσ  c. ;,, yxxyyx τ=τσσ  d. ;,, yzxzxy τττ  
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27. 

 

 

 

 

For the 

plates 

subjecte

d to 

bending

, the 

distribut
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normal 

stresses 
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the 

thicknes
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28. 

 

 

 

 

 

 

 

What is the distribution of 

stresses τxy over the plate 

thickness? 

a.  b.  c.  d.  
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29. 

 

 

 

The boundary conditions for the rectangular plate shown in the figure are: 

a. 

on sides x = 0;  

x = a 
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30. 

 

 

 

 

 

The extreme normal stresses extreme max
min

x
σ  for the 

rectangular plate shown in the figure are: 
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31. 

 

 

 

 

 

What is the thickness h of the plate presented in the figure 

and made of a material characterized by the limit normal 

stress σ0 ? 
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For the plate loaded as shown in the figure, indicate the 

correct value of the free term 1p , resulted from the 

transcription into finite differences of equation 
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33. 

 

 

 

 

 

 

The deflection and bending moments at the central point of 

the plate presented in the figure, determined by using the 

finite differences method for the indicated grid, are: 
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34. In the axial-symmetric circular and annular plates, the following internal forces occur: 

a. Mr , Mrθ = Mθr , Tr ; b. Mθ , Mrθ = Mθr , Tθ ; c. Mr , Mθ , Mrθ = Mθr d. Mr , Mθ , Tr ; 

 

35. 

For a circular solid plate, the solution of equation ( )
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36. 

Indicate the loading case for the circular plate, knowing that the corresponding particular solution is 
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37. 

 

 

The deflection expression for the circular plate presented in the figure is 
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38. What is the condition that does not correspond to membrane state for shells?: 

a) 

b) 

c) 

d) 

the shell thickness, constant or slow variable, is small; 

the shell surface is continuous (without holes or stiffnings etc.); 

the shell is continuously supported in the tangent plane to the middle surface; 

the loads (forces or moments) are concentrated and can have any sense. 

 → 

39. 

For axial-symmetric rotation shells, in the membrane theory, the internal force in the meridian direction, 

Nφ, at a section defined by the angle φ is expressed by using the relation 
ϕπ

−= ϕ∆
ϕ

sinr2

R
N , where ϕ∆R  is: 

a) 

b) 

c) 

d) 

the radius of curvature; 

the reaction along the boundary; 

the resultant of the afferent gravitational loads; 

the resultant of reactions along the boundary. 

 

40. Over the thickness of the shells that work in membrane state, the stresses are: 

a. zero b. uniform distributed  c. linear distributed d. parabolic 

distributed 
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41. 

 

 

 

 

 

 

The circumferential internal force Nθ , in axial-symmetric 

rotation shells, according to membrane state theory, is 

obtained from an algebraic equilibrium equation that has the 

form: (r1, r2 – the principal radii of curvature at a point of the 

surface)  
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42. 

 

 

 

The resultant R∆φ = R∆y of the load given by the own 

weight (g – the weight per unit surface), at a current 

section of the conical dome shown in the figure is: 

a. 2rg π⋅  b. rlg π⋅  c. ryg π⋅  d. ry2g π⋅  

 

43. The components of the load produced by snow on axial-symmetric rotation shells are: 
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44. 

 

 

 

The membrane internal force Nθ, at a current section of 

the conical dome presented in the figure, is determined 

from an algebraic equation that has the form: 
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45. 

 

 

 

 

 

 

 

 

 

The internal force in the supporting ring of the dome shown in 

the figure is: 

a. iRV ⋅  b. im RN ⋅ϕ  c. iRH ⋅  d. iRH ⋅−  

 

46. 

 

 

 

The equilibrium equations for open cylindrical shells 

that work in membrane state are: 
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The internal forces are obtained from this system in 

the following order: 

 

a. Nx , Nφ , Nxφ b. Nx , Nxφ , Nφ c. Nφ , Nxφ , Nx d. Nφ , Nx , Nxφ 

 

47. 

 

In the cylindrical shell having one 

span and one bay, supported on a 

pediment, the internal force Nφ 

produced by the own weight has 

the expression:  

a. ϕ⋅− singx2  b. ϕ⋅ cosgR2  c. ϕ⋅
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48. 

 

The internal force Nφ, produced by the 

weight of snow in a cylindrical roof with 

one span and one bay, supported on a 

pediment, is determined by using the 

relation: 

a. ϕ⋅− 2cosqR  b. ϕ⋅ cosqR  c. ϕ⋅− 2sinqx
2

3
 d. ϕ⋅
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49. The yielding criterion at a point where the stresses σ and τ are known, can be expressed as: 

a. c1 σ=σ  b. c
22

2

1
σ=τ+σ  c. 

c
22 4 σ=τ+σ  d. 

c
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50. 
The yielding criterion Von Mises for the stress state at a point, expressed by the stresses σ and τ, has the 

form: 

a. 
c

22
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c
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