

Bd. Prof. dr. Dimitrie Mangeron 43, cod 700050 , IASI, tel: (0232)278683*, 254638, fax: (0232)233368

TEORY OF ELASTICITY AND PLASTICITY

1.	The system of equations $\frac{\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{yx}}{\partial y} + X = 0}{\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_y}{\partial y} + Y = 0}$ represents:
a)	the static equilibrium equations for an infinitesimal element detached from a body subjected to a plane stress state:
b)	the dynamic equilibrium equations for an infinitesimal element detached from a body subjected to a plane stress state;
c) d)	the boundary conditions in plane elasticity; the continuity condition in plane elasticity.

The stress tensor at a point of a deformable loaded is:

2.		Τ _σ	$\mathbf{\sigma}_{\mathbf{x}} = \begin{bmatrix} \sigma_{\mathbf{x}} & \tau_{\mathbf{y}\mathbf{x}} \\ \tau_{\mathbf{x}\mathbf{y}} & \sigma_{\mathbf{y}} \\ \tau_{\mathbf{x}\mathbf{z}} & \tau_{\mathbf{y}\mathbf{z}} \end{bmatrix}$	$ \begin{bmatrix} \tau_{zx} \\ \tau_{zy} \\ \sigma_{z} \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 4 \end{bmatrix} $	$\begin{array}{cccc} 0 & 0 & 4 \\ 10 & 0 \\ 0 & -12 \end{array}$	$\frac{N}{mm^2}$						
	What is the tensor element that represents a principal stress?											
a.	4 N/mm ²	b. 1	0 N/mm^2	с.	-12 N/ m	m^2 d	1.	20N/ mm ²				

3. The system of equations
$$p_x = \sigma_x l + \tau_{yx} m$$

 $p_y = \tau_{xy} l + \sigma_y m$ represents:

- a) the static equilibrium equations for an infinitesimal element detached from a body subjected to a plane stress state;
- b) the dynamic equilibrium equations for an infinitesimal element detached from a body subjected to a plane stress state;
- c) the boundary conditions in plane elasticity;
- d) the continuity condition in plane elasticity the continuity.

4.	The system of equations $\varepsilon_x = \frac{\partial u}{\partial x}$, $\varepsilon_y = \frac{\partial v}{\partial y}$, $\gamma_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}$, represents:	
a)	the constitutive law of the material in plane elasticity;	

b) the geometric equations in plane elasticity;

- c) the constitutive law of the material in three-dimensional elasticity;
- d) the boundary conditions in plane elasticity.

Prof. dr. D

MINISTERUL EDUCATIEI CERCETARII SI TINERETULUI UNIVERSITATEA TEHNICA "GH. ASACHI" IASI FACULTATEA DE CONSTRUCTII

The strain tensor at a point of a homogeneous and isotropic body is:

5.
$$T_{\varepsilon} = \begin{bmatrix} \varepsilon_{x} & \frac{1}{2}\gamma_{yx} & \frac{1}{2}\gamma_{zx} \\ \frac{1}{2}\gamma_{xy} & \varepsilon_{y} & \frac{1}{2}\gamma_{zy} \\ \frac{1}{2}\gamma_{xz} & \frac{1}{2}\gamma_{yz} & \varepsilon_{z} \end{bmatrix} = 10^{-4} \begin{bmatrix} 8 & 3 & 0 \\ 3 & -4 & 0 \\ 0 & 0 & 4 \end{bmatrix}$$

A principal direction of deformation at this point coincides to: direction of axis direction of axis

a.	direction Ox	of	axis	b.	direction of axis Oy	c.	direction Oz	of	axis	d.	bisector xÔy	of	angle

- Condition $\Delta(\sigma_x + \sigma_y) = 0$ represents: 6.
- a static equilibrium equation in plane elasticity; a)
- b) the continuity condition expressed in terms of stresses, in plane elasticity;
- the continuity condition expressed in terms of stresses, in three-dimensional elasticity; c)
- d) a boundary condition in plane elasticity.
- The solution of a plane elasticity problem in terms of stresses, by considering a Cartesian coordinate 7. system, consists in solving the differential equation (notation $\nabla^2 \nabla^2 \equiv \Delta \Delta$):

a.	$\nabla^2 \nabla^2 w(x, y) = \frac{p(x, y)}{D}$	b.	$\nabla^2 \nabla^2 F(r, \vartheta) = 0$	c.	$\frac{d^4w}{dx^4} = \frac{p(x)}{D}$	d.	$\nabla^2 \nabla^2 F(x, y) = 0$
----	---	----	---	----	--------------------------------------	----	---------------------------------

8. The stress function F(x,y) generates the following stresses:

a)	$\sigma_{\rm x} = \frac{\partial^2 F}{\partial x^2};$	$\sigma_{y} = \frac{\partial^{2} F}{\partial y^{2}};$	$\tau_{xy} = \frac{\partial^2 F}{\partial x \partial y} ;$
b)	$\sigma_x = \frac{\partial F}{\partial y} ;$	$\sigma_y = \frac{\partial F}{\partial x} ;$	$\tau_{xy} = - \; \frac{\partial^2 F}{\partial x \partial y} \; ; \qquad \qquad$
c)	$\sigma_{x} = \frac{\partial^{2} F}{\partial y^{2}};$	$\sigma_y = \frac{\partial^2 F}{\partial x^2} ;$	$\tau_{xy} = -\frac{\partial^2 F}{\partial x \partial y} \ ; \label{eq:tau}$
d)	$\sigma_{\rm x} = \frac{\partial^2 F}{\partial x^2} - X \cdot x ;$	$\sigma_{y} = \frac{\partial^{2} F}{\partial y^{2}} - Y \cdot y ;$	$\tau_{xy} = - \frac{\partial^2 F}{\partial x \partial y} ;$

For the rectangular two-dimensional element shown in the figure, the stress function is:

10. The polynomial corresponding to tension along to orthogonal directions is:

Bd. Prof. dr. Dimitrie Mangeron 43, cod 700050 ,IASI, tel: (0232)278683*, 254638, fax: (0232)233368

a.
$$F(x,y) = \frac{ax^2}{2} + bxy$$
 b. $F(x,y) = \frac{ax^3}{6} + \frac{cy^3}{6}$ c. $F(x,y) = bxy + \frac{cy^2}{6}$ d. $F(x,y) = \frac{ax^2}{2} + \frac{cy^2}{2}$

11.	The polynomial $F(x, y)$	$)=\frac{a}{a}$	$\frac{y^2}{2} + \frac{dy^3}{6}$ corresponds to:				
a.	eccentric tension in y axis direction	b.	eccentric tension in x axis direction	C.	combined shear and bending	d.	tension along two directions

12. The stresses generated by the polynomial $F(x, y) = \frac{ax^2}{2} + bxy + \frac{cy^3}{6}$ have the expressions:

a.	$\sigma_x = cy;$	$\sigma_y = a;$	h	$\sigma_x = bx + cy;$	$\sigma_y = a;$	C	$\sigma_x = cy;$	$\sigma_y = 0;$	d	$\sigma_x = bx + cy;$	$\sigma_y = a;$
u.	$\tau_{xy} = -b$		0.	$\tau_{xy} = -b$		С.	$\tau_{xy} = -by$		u.	$\tau_{xy}\!=0$	

The correct values of the stresses σ_y and τ_{xy} at 14. point "1" of the element presented in the figure are: a. $\sigma_y = p, \tau_{xy} = 0$ b. $\sigma_y = -p, \tau_{xy} = p$ c. $\sigma_y = -p, \tau_{xy} = 0$ d. $\sigma_y = 0, \tau_{xy} = 0$

Bd. Prof. dr. Dimitrie Mangeron 43, cod 700050 ,IASL, tel: (0232)278683*, 254638, fax: (0232)233368

functions

Bd. Prof. dr. Dimitrie Mangeron 43, cod 700050 ,IASI, tel: (0232)278683*, 254638, fax: (0232)233368

The stresses produced by the interior pressure $p_{i}\xspace$ in a cylinder with thick walls are:

$$\sigma_r = 2A + \frac{B}{r^2}; \qquad \sigma_\theta = 2A - \frac{B}{r^2};$$

19. The constants 2A and B are obtained by using the following boundary conditions:

a force that acts normal to the surface, as

presented in the figure, the radial stresses are:

b.

 $\sigma_r = -$

 $2P \cos \theta$

π r

 $2P \cos \theta$

π

r

 $\sigma_r =$

21.

a.

 σ_r

 $3P \cos \theta$

 $2\pi r^2$

 $3P \cos \theta$

r

2π

d.

 $\sigma_r = -$

 $\sigma_r = -$

c.

a.	$(\sigma_r)_{r=R_i} = p_i;$	h	$(\sigma_r)_{r=R_i} = -p_i$	C	$(\sigma_{\theta})_{r=R_{i}}=0$	d	$(\sigma_r)_{r=R_i} = -p_i$
	$(\sigma_r)_{r=R_e}=0$	U.	$(\sigma_{\theta})_{r=R_e} = p_i$	C.	$(\sigma_r)_{r=R_c} = 0$	u.	$(\sigma_r)_{r=R_c} = 0;$

24. The differential equation of the deformed middle surface in Cartesian coordinates for rectangular plates, acted by normal forces to their middle plane, has the shape:

a)	$\frac{\partial^{4} F}{\partial x^{4}} + 2 \frac{\partial^{4} F}{\partial x^{2} \partial y^{2}} + \frac{\partial^{4} F}{\partial y^{4}} = 0;$
b)	$\frac{\partial^4 w}{\partial x^4} + 2 \frac{\partial^4 w}{\partial x^2 \partial y^2} + \frac{\partial^4 w}{\partial y^4} = \frac{p(x, y)}{D};$
c)	$\frac{d^4w}{dr^4} + \frac{2}{r}\frac{d^3w}{dr^3} - \frac{1}{r^2}\frac{d^2w}{dr^2} + \frac{1}{r^3}\frac{dw}{dr} = \frac{p(r)}{D};$
d)	$\frac{d^4w}{dx^4} = \frac{p(x)}{EI};$

- 25. The internal forces that occur in rectangular plates, loaded by normal forces to their middle plane, are:
- a) the axial forces N_x , N_y ; the shear forces T_x , T_y ;
- b) the axial forces N_x , N_y ; the bending moments M_x , M_y ;
- c) the bending moments M_x , M_y ; the twisting moment $M_{xy} = M_{yx} = M_t$; the shear forces T_x , T_y ;
- d) the axial forces N_x , N_y ; the twisting moment $M_{xy} = M_{yx}$;

26. Some of the stresses that occur in a plate subjected to bending have maximum absolute value on the upper surface and the lower surface of the plate. What are these stresses?

a.	$\sigma_x,\tau_{xz},\tau_{yz};$	b.	$\sigma_y,\tau_{xz},\tau_{yz};$	c.	$\boldsymbol{\sigma}_{x},\boldsymbol{\sigma}_{y},\boldsymbol{\tau}_{xy}=\boldsymbol{\tau}_{yx};$	d.	$\boldsymbol{\tau}_{xy},\boldsymbol{\tau}_{xz},\boldsymbol{\tau}_{yz};$	
----	---------------------------------	----	---------------------------------	----	--	----	---	--

Bd. Prof. dr. Dimitrie Mangeron 43, cod 700050 ,IASI, tel: (0232)278683*, 254638, fax: (0232)233368

44. The membrane internal force N₀, at a current section of the conical dome presented in the figure, is determined from an algebraic equation that has the form: a. $\frac{N_{\phi}}{r_1} + \frac{N_{\theta}}{r_2} + p_y = 0$ b. $\frac{N_{\phi}}{r_2} + \frac{N_{\theta}}{r_1} + p_z = 0$ c. $\frac{N_{\theta}}{r_2} + p_y = 0$ d. $\frac{N_{\theta}}{r_2} + p_z = 0$

Bd. Prof. dr. Dimitrie Mangeron 43, cod 700050 ,IASI, tel: (0232)278683*, 254638, fax: (0232)233368

49.	The yielding	criterion at a	point where	the stresses σ and	d τ are known,	can be expressed a	as
-----	--------------	----------------	-------------	---------------------------	----------------	--------------------	----

a.	$\sigma_1 = \sigma_c$	b.	$\frac{1}{2}\sqrt{\sigma^2 + \tau^2} = \sigma_c$	c.	$\sqrt{\sigma^2 + 4\tau^2} = \sigma_c$	d.	$\sqrt{\sigma^2+\tau^2}=\sigma_c$
----	-----------------------	----	--	----	--	----	-----------------------------------

50. The yielding criterion Von Mises for the stress state at a point, expressed by the stresses σ and τ , has the form:

a.	$\sqrt{\sigma^2 + 2,6\tau^2} = \sigma_c$	b.	$\sqrt{\sigma^2 + 3\tau^2} = \sigma_c$	c.	$\sqrt{\sigma^2 + \tau^2} = \sigma_c$	d.	$\frac{1}{2}\sqrt{\sigma^2 + 4\tau^2} = \sigma_c$
----	--	----	--	----	---------------------------------------	----	---