Foundations of Fire Safety in Civil Engineering

Dan Diaconu-Șotropa

Universitatea Tehnică „Gh. Asachi” din Iași

Editura POLITEHNIUM

Universitatea Tehnică “Gh. Asachi” din Iași

2014
FOREWORD

This work aims to set the basis for the first course of *Foundations of Fire Safety in Civil Engineering*, part of the *Fire Safety in Civil Engineering* discipline (which, in the current form, contains a course of *Fire Safety Engineering in Civil Engineering*), course and discipline which were initiated together with the start of Bachelor’s and Master’s programmes in the Bologna format.

The work is built around a comprehensive set of lecture notes and supporting notes for the *Fire Safety in Civil Engineering and Equipments* course, created in 2008 (L. Burlacu and D. Diaconu-Șotropa), but also contains the knowledge and experience gained by the author Dan Diaconu-Șotropa in the following years.

The work, with a branched structure containing 10 chapters, is mainly based on the NFPA Fire Safety Concepts Tree from 1997. The chapters referring to equipments with which buildings are provided, such as fire safety equipments (chapters 8 and 9), were taken from the before mentioned lecture notes, but with a large amount of changes and updates considered to be necessary by the author of this work.

Some pieces of information which may not be present in the current technical regulations have a documentary purpose, and are used for a better understanding of the material.

This work is aimed mainly at university students in Civil Engineering courses, but can also apply to Architecture, who desire to gain knowledge in the field of Fire Safety; the document is not meant to be used by students and professionals as a design guide, and is only meant to be used in an early stage of their studies in the field.

I hereby thank everyone who participated, directly or indirectly, to the writing of this work.
ABOUT THE AUTHOR

After graduating the Faculty of Civil Engineering and Architecture of the Technical University "Gh. Asachi" of Iași in 1981, the author’s professional activity is as follows:

- 1981-1986, Engineer: Trust of Building Assembly, Iași;
- 1986-1990, Engineer, Head Engineer: Seismic Research Centre, Civil Engineering Mechanics, Faculty of Civil Engineering and Architecture of Iași (involved in designing the nuclear power plants of Cernavodă and Kostołodui);
- after 1990, Teaching Assistent, Lecturer, Associate Professor, Professor: Civil Engineering Mechanics, Department of Structural Mechanics, Faculty of Civil Engineering and Architecture of the Technical University "Gh. Asachi" of Iași (teaching the following disciplines: Computer Programming, Computer Aided Engineering, Numerical Methods, Fire Safety in Civil Engineering);
- 2000-2003, Director: Department of Continuous Education and Distance Learning in Civil Engineering, DECID-C.

In May 1997 the author finalised his PhD titled Response of structural systems to dynamics temperature variations, at the Technical University “Gh. Asachi” of Iași.

The author is a member of a series of professional associations and technical comities:

- member of CIB-W014 (International Council for Research and Innovation in Building and Construction - Fire);
- founding member of The Computer Aided Engineering Society (SIAC – Romanian abbreviation), secretary of the Iași branch;
- founding member of the Academic Society of Civil Engineering ANTON ȘESAN (SACS), Technical University “Gh. Asachi” of Iași;
- member of the Structure Designer Civil Engineers Association (AICPS);
- member in technical committees of the Romanian Standardisation Association (ASRO): CT343-Basis of design and eurocodes for structures (Fire Safety), CT216-Fire safety equipment, CT 217-Fire Safety in Civil Engineering;
- member in technical committees of The Regional Ministry of Development and Tourism (MDRT): Permanent Technical Council for Civil Engineering (Technical committee 1, 2, 3-fire
safety). CTS4-Actions concerning buildings and CTS11-Functional requirements in Civil Engineering and Physics of Civil Engineering (where Fire Safety is included);
- founding member of The Romanian Association of Fire Safety Engineers (ARISI), president of the Moldova branch, in Iaşi.

The author took part in a series of scientific activities related to the topic:
- 2002, Sheffield University, United Kingdom, Thermo-deformability and Fire Safety Engineering;
- 2008, EUROCODES Background and Applications Bruxelles 18-20 February;
- 2008, participant, Seminar “Structural Design for Fire Safety”, as part of the European project RFCS-DIFISEK+, Faculty of Civil Engineering of Timişoara, “Politehnica” University of Timişoara;
 - 2009, participant “Meeting of CIB W14-Fire, Lund University, April 23-24, 2009”;
 - 2012, participant, Seventh International Conference on Structures in Fire, SIF 2012, ETH-Zurich, June 6-8, 2012;

The author initiated new research fields inside the Technical University "Gh. Asachi" of Iaşi:
- Numerical analysis of thermodeformable structures;
- Computer Aided Engineering for conductive heat transfer;

As a lecturer, the author initiated the teaching of new university courses:
- Master’s programme: Fire Safety in Civil Engineering, 2008;
- Courses: Foundations of Fire Safety in Civil Engineering (Bachelor’s engineering course) and Fire Safety Engineering in Civil Engineering (Master’s Engineering Course).
CONTENTS

FIRE IN THE CONTEXT OF AN EMERGENCY

CHAPTER 1 NOTIONS REGARDING COMBUSTION

1.1 The phenomenon of combustion
1.1.1 Combustion
1.1.2 Initiation of combustion
1.2 Explosion
References

CHAPTER 2 NOTIONS REGARDING FIRES

2.1 Fires in Civil Engineering
2.1.1 The fire process and evolution in confined spaces
2.1.2 Fire Dynamics in buildings
2.1.3 Source of fires
2.1.4 Fire effects
2.1.5 Classification of fires
2.1.6 Extinguishing fires
2.2 Judging the severity of a fire
2.2.1 Fire intensity
2.2.2 Fire load density
2.2.3 Heat generated during a fire
2.2.4 Application to determining fire load density in different environments
References

CHAPTER 3 FIRE SAFETY SYSTEMS IN CIVIL ENGINEERING

3.1 Fire Safety in Civil Engineering
3.1.1 Objectives of Fire Safety
3.1.2 Fire safety strategies in Civil Engineering
3.2 Fundamental concepts of Fire Safety
3.2.1 The five phase fire
3.2.2 Generating fire compartments
3.2.3 Passive fire control
3.2.4 Active fire control
3.2.5 Concepts of Fire Safety in Civil Engineering
3.2.6 Summary of Fire Safety Concepts
3.3 Fire risk in Civil Engineering
3.3.1 Elements of Fire risk
3.3.2 Cost of Fire Safety measures
3.3.3 Fire Risk Assessment
3.4 Fire Safety Engineering
References
CHAPTER 4 CONTROL OF COMBUSTIBLE MATERIALS OR PERFORMANCE OF CIVIL ENGINEERING MATERIALS WHICH SERVE A PURPOSE IN FIRE SAFETY

4.1 Notions regarding Fire Safety performance
4.1.1 Performance of technical systems
4.1.2 Reference scenarios
4.2 Romanian (traditional) classification of materials regarding Fire Safety
4.2.1 Combustibility of materials used in Civil Engineering
4.2.2 Fire resistance of structural elements
4.3 European classification of materials regarding Fire Safety
4.3.1 Fire reaction performance of Civil Engineering materials
4.3.2 Fire resistance of a series of materials
4.3.3 Fire Safety of roofs or roof covers
4.3.4 Fire Safety for smoke control systems
4.4 Particularities of engineering materials in fire situations
4.4.1 Masonry and constituent materials
4.4.2 Concrete
4.4.3 Iron
4.4.4 Wood
4.4.5 Glass
References

CHAPTER 5 BUILDINGS IN THE CONTEXT OF FIRE SECURITY IN ROMANIA

5.1 Classifying buildings based on Fire Security
5.2 Fire risk associated to buildings
5.3 Fire resistance grade of buildings
5.3.1 Fire resistance grade for civil (public) buildings
5.3.2 Fire resistance grade for industrial buildings
References

CHAPTER 6 FIRE SAFETY MEASURES IN CIVIL ENGINEERING

6.1 Building stability during a fire
6.2 Preventing fire spread on building exterior
6.2.1 Safety distances between fire compartments
6.2.2 Fire resistance of facades and roofs
6.3 Preventing fire spread in building interior
6.3.1 Creating fire compartments in buildings
6.3.2 Controlling smoke and hot gases produced during fires
6.3.3 Thermo-protection of combustible building materials
6.3.4 Using fire extinguishing systems
6.4 Ensuring escape and access routes in case of fire
6.4.1 Evacuating people in case of fire
6.4.2 Access and escape routes (national norms)
References

CHAPTER 7 STABILITY OF STRUCTURES DURING FIRES

7.1 Events during fires
7.1.1 Selecting fire scenarios and fire models
7.1.2 Analysis of heat transfer to structures
7.1.3 Determining effects to exposed structures
7.2 Checking fire resistance of affected structures
 7.2.1 General analytical methods for fire safety
 7.2.2 Particular analytical methods for fire safety
 7.3 Particularities of the fire safety of reinforced and pre-stressed concrete
 7.3.1 Specific statements
 7.3.2 Particular procedure for checking fire safety resistance
 7.3.3 Determining strength of structural elements
 7.4 Particularities of fire strength of steel structures
 7.4.1 Specific statements
 7.4.2 Particular procedure for checking fire safety resistance
 7.4.3 Determining strength of structural elements
 7.5 Particularities of fire strength of wooden structures
 7.5.1 Specific statements
 7.5.2 Particular procedure for checking fire safety resistance
 7.5.3 Determining strength of structural elements

CHAPTER 8 FIRE SAFETY RELATING TO EQUIPMENTS
 8.1 Electrical installations
 8.1.1 Rules regarding design, building and usage
 8.1.2 Powering receptors which play a role in Fire Safety
 8.1.3 Emergency lighting for Fire Safety
 8.2 Lighting protection installations
 8.3 Installations for ventilation and air conditioning
 8.4 Heating systems
 8.4.1 Rules regarding design, building and usage of local heating systems
 8.4.2 Rules regarding design, building and usage of central heating systems
 8.5 Internal installations which use combustible natural gas
 8.6 Internal installations which use liquefied gas

CHAPTER 9 TECHNICAL MEANS OF DETECTING, SIGNALLING
 AND FIGHTING FIRES
 9.1 Devices to detect and signal fire presence
 9.1.1 Fire detectors
 9.1.2 Fire signalling
 9.1.3 Emergency signal buttons
 9.1.4 Circuitry of fire signalling devices
 9.2 Fire fighting installations
 9.2.1 Hydrants
 9.2.2 Sprinklers
 9.2.3 Drenchers
 9.2.4 Pulverised water
 9.2.5 Foam systems
 9.2.6 Powder systems
 9.2.7 Gas systems
 9.3 Fire extinguishers
 9.3.1 Fire extinguishers, means for initial fire fighting
 9.3.2 Criteria for selecting fire extinguishers
 9.3.3 Criteria for placing fire extinguishers
 9.4 Equipping fire fighting services
9.4 Firefighting Equipment

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.4.1 Fire trucks</td>
<td>222</td>
</tr>
<tr>
<td>9.4.2 Fire fighting ships</td>
<td>225</td>
</tr>
<tr>
<td>9.4.3 Fire fighting trains</td>
<td>226</td>
</tr>
<tr>
<td>9.4.4 Fire fighting aircraft</td>
<td>226</td>
</tr>
<tr>
<td>9.4.5 Fire fighting machines</td>
<td>226</td>
</tr>
<tr>
<td>9.4.6 Accessories for fire fighting</td>
<td>228</td>
</tr>
</tbody>
</table>

References

<table>
<thead>
<tr>
<th>References</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>229</td>
</tr>
</tbody>
</table>

CHAPTER 10 FIRE SAFETY AND RISK IN CIVIL ENGINEERING

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.1 Estimating Fire Safety through Fire Risk assessments</td>
<td>231</td>
</tr>
<tr>
<td>10.2 Qualitative Fire Safety estimation via the Fire Safety scenario</td>
<td>234</td>
</tr>
<tr>
<td>10.3 Quantitative Fire Safety estimation via deterministic mathematical methods</td>
<td>238</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>References</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>264</td>
</tr>
</tbody>
</table>